Traveling wave solutions of advection–diffusion equations with nonlinear diffusion
نویسندگان
چکیده
منابع مشابه
Exact traveling wave solutions of some nonlinear evolution equations
Using a traveling wave reduction technique, we have shown that Maccari equation, (2?1)-dimensional nonlinear Schrödinger equation, medium equal width equation, (3?1)-dimensional modified KdV–Zakharov– Kuznetsev equation, (2?1)-dimensional long wave-short wave resonance interaction equation, perturbed nonlinear Schrödinger equation can be reduced to the same family of auxiliary elliptic-like equ...
متن کاملExact traveling wave solutions for system of nonlinear evolution equations
In this work, recently deduced generalized Kudryashov method is applied to the variant Boussinesq equations, and the (2 + 1)-dimensional breaking soliton equations. As a result a range of qualitative explicit exact traveling wave solutions are deduced for these equations, which motivates us to develop, in the near future, a new approach to obtain unsteady solutions of autonomous nonlinear evolu...
متن کاملNew explicit traveling wave solutions for three nonlinear evolution equations
Abstract: In this paper, we demonstrate the effectiveness of the (G ′ G )-expansion method by seeking more exact solutions of the SRLW equation, the (2+1) dimensional PKP equation and the (3+1) dimensional potential-YTSF equation. By the method, the two nonlinear evolution equations are separately reduced to non-linear ordinary differential equations (ODE) by using a simple transformation. As a...
متن کاملSome traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کامل"Traveling wave" solutions of FitzHugh model with cross-diffusion.
The FitzHugh-Nagumo equations have been used as a caricature of the Hodgkin-Huxley equations of neuron firing and to capture, qualitatively, the general properties of an excitable membrane. In this paper, we utilize a modified version of the FitzHugh-Nagumo equations to model the spatial propagation of neuron firing; we assume that this propagation is (at least, partially) caused by the cross-d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2013
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2012.11.003